5.1 TensorBoard 介绍

本章代码:

TensorBoard 是 TensorFlow 中强大的可视化工具,支持标量、文本、图像、音频、视频和 Embedding 等多种数据可视化。

在 PyTorch 中也可以使用 TensorBoard,具体是使用 TensorboardX 来调用 TensorBoard。除了安装 TensorboardX,还要安装 TensorFlow 和 TensorBoard,其中 TensorFlow 和 TensorBoard 需要一致。

TensorBoardX 可视化的流程需要首先编写 Python 代码把需要可视化的数据保存到 event file 文件中,然后再使用 TensorBoardX 读取 event file 展示到网页中。

下面的代码是一个保存 event file 的例子:

    import numpy as np
    import matplotlib.pyplot as plt
    from tensorboardX import SummaryWriter
    from common_tools import set_seed
    max_epoch = 100

    writer = SummaryWriter(comment='test_comment', filename_suffix="test_suffix")

    for x in range(max_epoch):

        writer.add_scalar('y=2x', x * 2, x)
        writer.add_scalar('y=pow_2_x', 2 ** x, x)

        writer.add_scalars('data/scalar_group', {"xsinx": x * np.sin(x),
                                                 "xcosx": x * np.cos(x)}, x)

    writer.close()

上面具体保存的数据,我们先不关注,主要关注的是保存 event file 需要用到 SummaryWriter 类,这个类是用于保存数据的最重要的类,执行完后,会在当前文件夹生成一个runs的文件夹,里面保存的就是数据的 event file。

然后在命令行中输入tensorboard --logdir=lesson5/runs启动 tensorboard 服务,其中lesson5/runsruns文件夹的路径。然后命令行会显示 tensorboard 的访问地址:

TensorBoard 1.9.0 at http://LAPTOP-DPDNNJSU:6006 (Press CTRL+C to quit)

在浏览器中打开,显示如下:

右上角有一些功能设置

左边的菜单栏如下,点击Show data download links可以展示每个图的下载按钮,如果一个图中有多个数据,需要选中需要下载的曲线,然后下载,格式有 csvjson可选。

runs显示所有的 event file,可以选择展示某些 event file 的图像,其中正方形按钮是多选,圆形按钮是单选。

optimizer 的属性

PyTorch 中提供了 Optimizer 类,定义如下:

class Optimizer(object):
    def __init__(self, params, defaults):        
        self.defaults = defaults
        self.state = defaultdict(dict)
        self.param_groups = []

主要有 3 个属性

  • defaults:优化器的超参数,如 weight_decay,momentum

  • state:参数的缓存,如 momentum 中需要用到前几次的梯度,就缓存在这个变量中

  • param_groups:管理的参数组,是一个 list,其中每个元素是字典,包括 momentum、lr、weight_decay、params 等。

  • _step_count:记录更新 次数,在学习率调整中使用

SummaryWriter

torch.utils.tensorboard.writer.SummaryWriter(log_dir=None, comment='', purge_step=None, max_queue=10, flush_secs=120, filename_suffix='')

功能:提供创建 event file 的高级接口

主要功能:

  • log_dir:event file 输出文件夹,默认为runs文件夹

  • comment:不指定 log_dir 时,runs文件夹里的子文件夹后缀

  • filename_suffix:event_file 文件名后缀

代码如下:

    log_dir = "./train_log/test_log_dir"
    writer = SummaryWriter(log_dir=log_dir, comment='_scalars', filename_suffix="12345678")
    # writer = SummaryWriter(comment='_scalars', filename_suffix="12345678")

    for x in range(100):
        writer.add_scalar('y=pow_2_x', 2 ** x, x)

    writer.close()

运行后会生成train_log/test_log_dir文件夹,里面的 event file 文件名后缀是12345678

add_scalar

add_scalar(tag, scalar_value, global_step=None, walltime=None)

功能:记录标量

  • tag:图像的标签名,图的唯一标识

  • scalar_value:要记录的标量,y 轴的数据

  • global_step:x 轴的数据

add_scalars

上面的add_scalar()只能记录一条曲线的数据。但是我们在实际中可能需要在一张图中同时展示多条曲线,比如在训练模型时,经常需要同时查看训练集和测试集的 loss。这时我们可以使用add_scalars()方法

add_scalars(main_tag, tag_scalar_dict, global_step=None, walltime=None)
  • main_tag:该图的标签

  • tag_scalar_dict:用字典的形式记录多个曲线。key 是变量的 tag,value 是变量的值

代码如下:

    max_epoch = 100
    writer = SummaryWriter(comment='test_comment', filename_suffix="test_suffix")
    for x in range(max_epoch):
        writer.add_scalar('y=2x', x * 2, x)
        writer.add_scalar('y=pow_2_x', 2 ** x, x)
        writer.add_scalars('data/scalar_group', {"xsinx": x * np.sin(x),
                                                 "xcosx": x * np.cos(x)}, x)
    writer.close()

运行后生成 event file,然后使用 TensorBoard 来查看如下:

add_histogram

add_histogram(tag, values, global_step=None, bins='tensorflow', walltime=None, max_bins=None)

功能:统计直方图与多分位折线图

  • tag:图像的标签名,图的唯一标识

  • values:要统计的参数,通常统计权值、偏置或者梯度

  • global_step:第几个子图

  • bins:取直方图的 bins

下面的代码构造了均匀分布和正态分布,循环生成了 2 次,分别用matplotlib和 TensorBoard 进行画图。

    writer = SummaryWriter(comment='test_comment', filename_suffix="test_suffix")
    for x in range(2):
        np.random.seed(x)
        data_union = np.arange(100)
        data_normal = np.random.normal(size=1000)
        writer.add_histogram('distribution union', data_union, x)
        writer.add_histogram('distribution normal', data_normal, x)
        plt.subplot(121).hist(data_union, label="union")
        plt.subplot(122).hist(data_normal, label="normal")
        plt.legend()
        plt.show()
    writer.close()

matplotlib画图显示如下:

正态分布显示如下,每个子图分别对应一个 global_step:

模型指标监控

下面使用 TensorBoard 来监控人民币二分类实验训练过程中的 loss、accuracy、weights 和 gradients 的变化情况。

首先定义一个SummaryWriter

writer = SummaryWriter(comment='test_your_comment', filename_suffix="_test_your_filename_suffix")

然后在每次训练中记录 loss 和 accuracy 的值

# 记录数据,保存于event file
writer.add_scalars("Loss", {"Train": loss.item()}, iter_count)
writer.add_scalars("Accuracy", {"Train": correct / total}, iter_count)

并且在验证时记录所有验证集样本的 loss 和 accuracy 的均值

# 记录数据,保存于event file
writer.add_scalars("Loss", {"Valid": np.mean(valid_curve)}, iter_count)
writer.add_scalars("Accuracy", {"Valid": correct / total}, iter_count)

并且在每个 epoch 中记录每一层权值以及权值的梯度。

    # 每个epoch,记录梯度,权值
    for name, param in net.named_parameters():
        writer.add_histogram(name + '_grad', param.grad, epoch)
        writer.add_histogram(name + '_data', param, epoch)

在训练还没结束时,就可以启动 TensorBoard 可视化,Accuracy 的可视化如下,颜色较深的是训练集的 Accuracy,颜色较浅的是 验证集的样本:

add_image

add_image(tag, img_tensor, global_step=None, walltime=None, dataformats='CHW')

功能:记录图像

  • tag:图像的标签名,图像的唯一标识

  • img_tensor:图像数据,需要注意尺度

  • global_step:记录这是第几个子图

  • dataformats:数据形式,取值有'CHW','HWC','HW'。如果像素值在 [0, 1] 之间,那么默认会乘以 255,放大到 [0, 255] 范围之间。如果有大于 1 的像素值,认为已经是 [0, 255] 范围,那么就不会放大。

代码如下:

writer = SummaryWriter(comment='test_your_comment', filename_suffix="_test_your_filename_suffix")

# img 1     random
# 随机噪声的图片
fake_img = torch.randn(3, 512, 512)
writer.add_image("fake_img", fake_img, 1)
time.sleep(1)

# img 2     ones
# 像素值全为 1 的图片,会乘以 255,所以是白色的图片
fake_img = torch.ones(3, 512, 512)
time.sleep(1)
writer.add_image("fake_img", fake_img, 2)

# img 3     1.1
# 像素值全为 1.1 的图片,不会乘以 255,所以是黑色的图片
fake_img = torch.ones(3, 512, 512) * 1.1
time.sleep(1)
writer.add_image("fake_img", fake_img, 3)

# img 4     HW
fake_img = torch.rand(512, 512)
writer.add_image("fake_img", fake_img, 4, dataformats="HW")

# img 5     HWC
fake_img = torch.rand(512, 512, 3)
writer.add_image("fake_img", fake_img, 5, dataformats="HWC")

writer.close()

使用 TensorBoard 可视化如下:

torchvision.utils.make_grid

上面虽然可以通过拖动显示每张图片,但实际中我们希望在网格中同时展示多张图片,可以用到make_grid()函数。

torchvision.utils.make_grid(tensor: Union[torch.Tensor, List[torch.Tensor]], nrow: int = 8, padding: int = 2, normalize: bool = False, range: Optional[Tuple[int, int]] = None, scale_each: bool = False, pad_value: int = 0)

功能:制作网格图像

  • tensor:图像数据,$B \times C \times H \times W$的形状

  • nrow:行数(列数是自动计算的,为:$\frac{B}{nrow}$)

  • padding:图像间距,单位是像素,默认为 2

  • normalize:是否将像素值标准化到 [0, 255] 之间

  • range:标准化范围,例如原图的像素值范围是 [-1000, 2000],设置 range 为 [-600, 500],那么会把小于 -600 的像素值变为 -600,那么会把大于 500 的像素值变为 500,然后标准化到 [0, 255] 之间

  • scale_each:是否单张图维度标准化

  • pad_value:间隔的像素值

下面的代码是人民币图片的网络可视化,batch_size 设置为 16,nrow 设置为 4,得到 4 行 4 列的网络图像

writer = SummaryWriter(comment='test_your_comment', filename_suffix="_test_your_filename_suffix")

split_dir = os.path.join(enviroments.project_dir, "data", "rmb_split")
train_dir = os.path.join(split_dir, "train")
# train_dir = "path to your training data"
# 先把宽高缩放到 [32, 64] 之间,然后使用 toTensor 把 Image 转化为 tensor,并把像素值缩放到 [0, 1] 之间
transform_compose = transforms.Compose([transforms.Resize((32, 64)), transforms.ToTensor()])
train_data = RMBDataset(data_dir=train_dir, transform=transform_compose)
train_loader = DataLoader(dataset=train_data, batch_size=16, shuffle=True)
data_batch, label_batch = next(iter(train_loader))

img_grid = vutils.make_grid(data_batch, nrow=4, normalize=True, scale_each=True)
# img_grid = vutils.make_grid(data_batch, nrow=4, normalize=False, scale_each=False)
writer.add_image("input img", img_grid, 0)

writer.close()

TensorBoard 显示如下:

AlexNet 卷积核与特征图可视化

使用 TensorBoard 可视化 AlexNet 网络的前两层卷积核。其中每一层的卷积核都把输出的维度作为 global_step,包括两种可视化方式:一种是每个 (w, h) 维度作为灰度图,添加一个 c 的维度,形成 (b, c, h, w),其中 b 是 输入的维度;另一种是把整个卷积核 reshape 到 c 是 3 的形状,再进行可视化。详细见如下代码:

    writer = SummaryWriter(comment='test_your_comment', filename_suffix="_test_your_filename_suffix")

    alexnet = models.alexnet(pretrained=True)

    # 当前遍历到第几层网络的卷积核了
    kernel_num = -1
    # 最多显示两层网络的卷积核:第 0 层和第 1 层
    vis_max = 1

    # 获取网络的每一层
    for sub_module in alexnet.modules():
        # 判断这一层是否为 2 维卷积层
        if isinstance(sub_module, nn.Conv2d):
            kernel_num += 1
            # 如果当前层大于1,则停止记录权值
            if kernel_num > vis_max:
                break
            # 获取这一层的权值
            kernels = sub_module.weight
            # 权值的形状是 [c_out, c_int, k_w, k_h]
            c_out, c_int, k_w, k_h = tuple(kernels.shape)

            # 根据输出的每个维度进行可视化
            for o_idx in range(c_out):
                # 取出的数据形状是 (c_int, k_w, k_h),对应 BHW; 需要扩展为 (c_int, 1, k_w, k_h),对应 BCHW
                kernel_idx = kernels[o_idx, :, :, :].unsqueeze(1)   # make_grid需要 BCHW,这里拓展C维度
                # 注意 nrow 设置为 c_int,所以行数为 1。在 for 循环中每 添加一个,就会多一个 global_step
                kernel_grid = vutils.make_grid(kernel_idx, normalize=True, scale_each=True, nrow=c_int)
                writer.add_image('{}_Convlayer_split_in_channel'.format(kernel_num), kernel_grid, global_step=o_idx)
            # 因为 channe 为 3 时才能进行可视化,所以这里 reshape
            kernel_all = kernels.view(-1, 3, k_h, k_w)  #b, 3, h, w
            kernel_grid = vutils.make_grid(kernel_all, normalize=True, scale_each=True, nrow=8)  # c, h, w
            writer.add_image('{}_all'.format(kernel_num), kernel_grid, global_step=kernel_num+1)

            print("{}_convlayer shape:{}".format(kernel_num, tuple(kernels.shape)))

    writer.close()

使用 TensorBoard 可视化如下。

这是根据输出的维度分批展示第一层卷积核的可视化

    writer = SummaryWriter(comment='test_your_comment', filename_suffix="_test_your_filename_suffix")

    # 数据
    path_img = "./lena.png"     # your path to image
    normMean = [0.49139968, 0.48215827, 0.44653124]
    normStd = [0.24703233, 0.24348505, 0.26158768]

    norm_transform = transforms.Normalize(normMean, normStd)
    img_transforms = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        norm_transform
    ])

    img_pil = Image.open(path_img).convert('RGB')
    if img_transforms is not None:
        img_tensor = img_transforms(img_pil)
    img_tensor.unsqueeze_(0)    # chw --> bchw

    # 模型
    alexnet = models.alexnet(pretrained=True)

    # forward
    # 由于在定义模型时,网络层通过nn.Sequential() 堆叠,保存在 features 变量中。因此通过 features 获取第一个卷积层
    convlayer1 = alexnet.features[0]
    # 把图片输入第一个卷积层
    fmap_1 = convlayer1(img_tensor)

    # 预处理
    fmap_1.transpose_(0, 1)  # bchw=(1, 64, 55, 55) --> (64, 1, 55, 55)
    fmap_1_grid = vutils.make_grid(fmap_1, normalize=True, scale_each=True, nrow=8)

    writer.add_image('feature map in conv1', fmap_1_grid, global_step=322)
    writer.close()

使用 TensorBoard 可视化如下:

add_graph

add_graph(model, input_to_model=None, verbose=False)

功能:可视化模型计算图

  • model:模型,必须继承自 nn.Module

  • input_to_model:输入给模型的数据,形状为 BCHW

  • verbose:是否打印图结构信息

查看 LeNet 的计算图代码如下:

    writer = SummaryWriter(comment='test_your_comment', filename_suffix="_test_your_filename_suffix")

    # 模型
    fake_img = torch.randn(1, 3, 32, 32)
    lenet = LeNet(classes=2)
    writer.add_graph(lenet, fake_img)
    writer.close()

使用 TensorBoard 可视化如下:

torchsummary

模型计算图的可视化还是比较复杂,不够清晰。而torchsummary能够查看模型的输入和输出的形状,可以更加清楚地输出模型的结构。

torchsummary.summary(model, input_size, batch_size=-1, device="cuda")

功能:查看模型的信息,便于调试

  • model:pytorch 模型,必须继承自 nn.Module

  • input_size:模型输入 size,形状为 CHW

  • batch_size:batch_size,默认为 -1,在展示模型每层输出的形状时显示的 batch_size

  • device:"cuda"或者"cpu"

查看 LeNet 的模型信息代码如下:

    # 模型
    lenet = LeNet(classes=2)
    print(summary(lenet, (3, 32, 32), device="cpu"))

输出如下:

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1            [-1, 6, 28, 28]             456
            Conv2d-2           [-1, 16, 10, 10]           2,416
            Linear-3                  [-1, 120]          48,120
            Linear-4                   [-1, 84]          10,164
            Linear-5                    [-1, 2]             170
================================================================
Total params: 61,326
Trainable params: 61,326
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 0.05
Params size (MB): 0.23
Estimated Total Size (MB): 0.30
----------------------------------------------------------------
None

上述信息分别有模型每层的输出形状,每层的参数数量,总的参数数量,以及模型大小等信息。

我们以第一层为例,第一层卷积核大小是 (6, 3, 5, 5),每个卷积核还有一个偏置,因此$6 \times 3 \times 5 \times 5+6=456$。

参考资料

如果你觉得这篇文章对你有帮助,不妨点个赞,让我有更多动力写出好文章。

我的文章会首发在公众号上,欢迎扫码关注我的公众号张贤同学

最后更新于