PyTorch 学习笔记
  • (开篇词)PyTorch 学习笔记
  • 1 基本概念
    • 1.1 PyTorch 简介与安装
    • 1.2 Tensor(张量)介绍
    • 1.3 张量操作与线性回归
    • 1.4 计算图与动态图机制
    • 1.5 autograd 与逻辑回归
  • 2 图片处理与数据加载
    • 2.1 DataLoader 与 DataSet
    • 2.2 图片预处理 transforms 模块机制
    • 2.3 二十二种 transforms 图片数据预处理方法
  • 3 模型构建
    • 3.1 模型创建步骤与 nn.Module
    • 3.2 卷积层
    • 3.3 池化层、线性层和激活函数层
  • 4 模型训练
    • 4.1 权值初始化
    • 4.2 损失函数
    • 4.3 优化器
  • 5 可视化与 Hook
    • 5.1 TensorBoard 介绍
    • 5.2 Hook 函数与 CAM 算法
  • 6 正则化
    • 6.1 weight decay 和 dropout
    • 6.2 Normalization
  • 7 模型其他操作
    • 7.1 模型保存与加载
    • 7.2 模型 Finetune
    • 7.3 使用 GPU 训练模型
  • 8 实际应用
    • 8.1 图像分类简述与 ResNet 源码分析
    • 8.2 目标检测简介
    • 8.3 GAN(生成对抗网络)简介
    • 8.4 手动实现 RNN
  • 9 其他
    • PyTorch 常见报错信息
    • 图神经网络 PyTorch Geometric 入门教程
由 GitBook 提供支持
在本页
  • 序列化与反序列化
  • PyTorch 中的模型保存与加载
  • torch.save
  • torch.load
  • 模型的断点续训练

这有帮助吗?

  1. 7 模型其他操作

7.1 模型保存与加载

上一页7 模型其他操作下一页7.2 模型 Finetune

最后更新于4年前

这有帮助吗?

本章代码:

这篇文章主要介绍了序列化与反序列化,以及 PyTorch 中的模型保存于加载的两种方式,模型的断点续训练。

序列化与反序列化

模型在内存中是以对象的逻辑结构保存的,但是在硬盘中是以二进制流的方式保存的。

  • 序列化是指将内存中的数据以二进制序列的方式保存到硬盘中。PyTorch 的模型保存就是序列化。

  • 反序列化是指将硬盘中的二进制序列加载到内存中,得到模型的对象。PyTorch 的模型加载就是反序列化。

PyTorch 中的模型保存与加载

torch.save

torch.save(obj, f, pickle_module, pickle_protocol=2, _use_new_zipfile_serialization=False)

主要参数:

  • obj:保存的对象,可以是模型。也可以是 dict。因为一般在保存模型时,不仅要保存模型,还需要保存优化器、此时对应的 epoch 等参数。这时就可以用 dict 包装起来。

  • f:输出路径

其中模型保存还有两种方式:

保存整个 Module

这种方法比较耗时,保存的文件大

torch.savev(net, path)

只保存模型的参数

推荐这种方法,运行比较快,保存的文件比较小

state_sict = net.state_dict()
torch.savev(state_sict, path)

下面是保存 LeNet 的例子。在网络初始化中,把权值都设置为 2020,然后保存模型。

import torch
import numpy as np
import torch.nn as nn
from common_tools import set_seed


class LeNet2(nn.Module):
    def __init__(self, classes):
        super(LeNet2, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 6, 5),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(6, 16, 5),
            nn.ReLU(),
            nn.MaxPool2d(2, 2)
        )
        self.classifier = nn.Sequential(
            nn.Linear(16*5*5, 120),
            nn.ReLU(),
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size()[0], -1)
        x = self.classifier(x)
        return x

    def initialize(self):
        for p in self.parameters():
            p.data.fill_(2020)


net = LeNet2(classes=2019)

# "训练"
print("训练前: ", net.features[0].weight[0, ...])
net.initialize()
print("训练后: ", net.features[0].weight[0, ...])

path_model = "./model.pkl"
path_state_dict = "./model_state_dict.pkl"

# 保存整个模型
torch.save(net, path_model)

# 保存模型参数
net_state_dict = net.state_dict()
torch.save(net_state_dict, path_state_dict)

运行完之后,文件夹中生成了```model.pkl``和model_state_dict.pkl,分别保存了整个网络和网络的参数

torch.load

torch.load(f, map_location=None, pickle_module, **pickle_load_args)

主要参数:

  • f:文件路径

  • map_location:指定存在 CPU 或者 GPU。

加载模型也有两种方式

加载整个 Module

如果保存的时候,保存的是整个模型,那么加载时就加载整个模型。这种方法不需要事先创建一个模型对象,也不用知道模型的结构,代码如下:

path_model = "./model.pkl"
net_load = torch.load(path_model)

print(net_load)

输出如下:

LeNet2(
  (features): Sequential(
    (0): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
    (4): ReLU()
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (classifier): Sequential(
    (0): Linear(in_features=400, out_features=120, bias=True)
    (1): ReLU()
    (2): Linear(in_features=120, out_features=84, bias=True)
    (3): ReLU()
    (4): Linear(in_features=84, out_features=2019, bias=True)
  )
)

只加载模型的参数

如果保存的时候,保存的是模型的参数,那么加载时就参数。这种方法需要事先创建一个模型对象,再使用模型的load_state_dict()方法把参数加载到模型中,代码如下:

path_state_dict = "./model_state_dict.pkl"
state_dict_load = torch.load(path_state_dict)
net_new = LeNet2(classes=2019)

print("加载前: ", net_new.features[0].weight[0, ...])
net_new.load_state_dict(state_dict_load)
print("加载后: ", net_new.features[0].weight[0, ...])

模型的断点续训练

在训练过程中,可能由于某种意外原因如断点等导致训练终止,这时需要重新开始训练。断点续练是在训练过程中每隔一定次数的 epoch 就保存模型的参数和优化器的参数,这样如果意外终止训练了,下次就可以重新加载最新的模型参数和优化器的参数,在这个基础上继续训练。

下面的代码中,每隔 5 个 epoch 就保存一次,保存的是一个 dict,包括模型参数、优化器的参数、epoch。然后在 epoch 大于 5 时,就break模拟训练意外终止。关键代码如下:

    if (epoch+1) % checkpoint_interval == 0:

        checkpoint = {"model_state_dict": net.state_dict(),
                      "optimizer_state_dict": optimizer.state_dict(),
                      "epoch": epoch}
        path_checkpoint = "./checkpoint_{}_epoch.pkl".format(epoch)
        torch.save(checkpoint, path_checkpoint)

在 epoch 大于 5 时,就break模拟训练意外终止

    if epoch > 5:
        print("训练意外中断...")
        break

断点续训练的恢复代码如下:

path_checkpoint = "./checkpoint_4_epoch.pkl"
checkpoint = torch.load(path_checkpoint)

net.load_state_dict(checkpoint['model_state_dict'])

optimizer.load_state_dict(checkpoint['optimizer_state_dict'])

start_epoch = checkpoint['epoch']

scheduler.last_epoch = start_epoch

需要注意的是,还要设置scheduler.last_epoch参数为保存的 epoch。模型训练的起始 epoch 也要修改为保存的 epoch。

参考资料

如果你觉得这篇文章对你有帮助,不妨点个赞,让我有更多动力写出好文章。

我的文章会首发在公众号上,欢迎扫码关注我的公众号张贤同学。

https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/model_save.py
https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/model_load.py
https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/checkpoint_resume.py
https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/save_checkpoint.py
深度之眼 PyTorch 框架班